
The Glue Semantics Work Bench: A Modular Toolkit for Exploring

Linear Logic and Glue Semantics

Moritz Meßmer and Mark-Matthias Zymla
University of Konstanz

moritz.messmer@uni-konstanz.de

mark-matthias.zymla@uni-konstanz.de

In this paper we present an easy to use, modular glue semantic prover building on the work by Crouch
and van Genabith (2000) and others to bring more attention to the development of semantic resources for
XLE/LFG. Thereby, we revive a glue semantics parser written in Prolog, since this first implementation is
not readily accessible anymore, due to the commercialization of the programming language. The modularity
of our semantic parser not only allows us to continue the exploration of the computational viability of linear
logic as a mechanism for modeling compositional semantics within LFG but it also allows us to explore the
interoperability of linear logic wrt. other syntactic theories as well as different semantic formalisms.

Concretely, we present a glue semantics prover written in Java. We chose Java for our implementation,
because it is an accessible and widely known state-of-the-art programming language that allows interfacing
several other NLP resources such as the Stanford CoreNLP tools. Through this we hope to make glue semantics
and linear logic more accessible for modern NLP applications and CL in general. The code consists of a parser for
reading linear logic formulas, a lexicon interface for deriving meaning representations from syntactic structures,
and the glue prover itself. Our prover (as of now) handles the implicational fragment of linear logic used in glue
semantics. It also deals with variables on the glue side which are implicitly bound by a universal quantifier.
Linear logic variables are used in lexical entries of quantificational expressions (Dalrymple, 2001).

Even the smallest fragment of linear logic is NP-complete (Kanovich, 1992) and therefore computationally
intractable. The algorithm for our prover implements the methods described in Hepple (1996) and Gupta and
Lamping (1998) and is inspired by a previous implementation by Richard Crouch. In order to make linear logic
computationally feasible three methods are employed which will be briefly outlined here.
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In the spirit of chart-parsing algorithms, the Hepple prover employs an indexing system to keep track of
resources that are already used and to avoid recomputing steps that have already been made. Each premise
is assigned a set of indexes. The initial premises of a proof are each assigned a single unique index. When
two premises are combined, a new premise is created whose index set is the joined set of indexes of the initial
premises. By making sure that the two index sets of the potentially combinable premises are disjoint, the
algorithm avoids redundant recombination steps. (1) shows a combination of two resources with a glue side
(linear logic) and a meaning side (λ-calculus). The Curry-Howard isomorphism describes the correspondence
between formulas in a formal logic system and types in a computational system, such as λ-calculus. In the case
of glue semantics this means that operations on the glue side of a term ((-introduction and -elimination) have
corresponding rules on the meaning side (λ-abstraction and -application).

Higher-order formulas, that is, implication formulas with complex antecedents, are compiled into sets of first-
order formulas which can then be combined using the method described above. Compiling a formula means
cutting out the antecedent(s) of a higher-order formula and adding them to the set of premises as assumptions,
as shown in (2). This allows us to make deductions with premises of any complexity, however, the algorithm
needs to ensure that assumptions are only used to prove the consequent they belonged to in the original formula.
For this purpose, extracted assumptions are marked on the original formula as a discharge. A formula with
a discharge A can only be combined with the respective assumption A or with a formula that was combined
with that assumption at some point. Following Gupta and Lamping (1998) we keep track of assumptions and
discharges directly. This is facilitated by the object-oriented nature of Java which allows us to simply check
whether a discharge and assumption resource refer to the same Java object. In our system, the compilation
preserves the Curry-Howard isomorphism on the meaning side by introducing a fresh variable on the extracted
assumption and a fresh lambda term which later rebinds the variable of the assumption on the original term,
as (2) shows. Again, object-orientated programming helps with this, because atomic parts of formulas can be



referenced from different formulas. By modifying for instance the Java object that signifies a lambda-bound
variable, all instances of that variable are modified as well, since they are all references to the same object.

The third method, which improves the efficiency of the algorithm, is a separation of skeleton and modifier
resources, as proposed by Gupta and Lamping (1998). A modifier resource is one whose glue side is of the form
A( A, where A may be an atom or a complex formula. This means that every every resource on the consumer
side of the implication is matched up with one on the producer side. Such resources significantly increase the
computational complexity of a proof, because they can be applied in varying orders and therefore significantly
increase the number of possible combinations. By separating non-symmetric skeleton resources from modifier
resources and combining all skeleton resources first, the algorithm cuts out unnecessary combination steps and
thus makes the deduction easier to compute.

Hooking up the glue prover with a syntactic parser is straightforward. There are in principle two possibilities:
produce semantic resources from the syntactic output as strings that can be parsed by the glue prover. These
strings have an intuitive, easy to type syntax. They can potentially be generated in various ways. One example
would be: as output generated by the XLE transfer system, that allows for rewriting of syntactic representations
via specific transfer rules (Crouch et al., 2017). This system has already been used extensively for generating
semantic representations (Crouch (2005); Crouch and King (2006) among others), however, not specifically for
glue semantics. Rather, the transfer system has been used to explore alternative semantic representations –
most prominently abstract knowledge representations (AKR) – for NLP applications (Bobrow et al., 2007).

The second way to generate lexical resources that can be fed into the glue prover is to generate them directly
within the Java framework available in the code. This is useful for example when working with Java resources
such as the Stanford dependency parser that is part of the CoreNLP bundle (Chen and Manning, 2014). In this
case the surface form of the glue premises is generated automatically. The system presented here comes with
an inbuilt lexicon for the Stanford parser comparable to the system proposed in Garrette and Klein (2009).
It generates semantic resources for minimal elements (nodes) of the tree and enriches them with semantic
information that is available for the construction of other resources, i.e. it builds up a semantic structure
akin to the traditional s(emantic)-structure used in LFG (Bresnan et al., 2015). In terms of the semantic
representation, the glue prover comes with a basic implementation of lambda calculus, which on the one hand
is necessary for the compilation of linear logic formulas (see above) and on the other hand can be used to hook
the prover up with a semantic formalism. Consider the traditional example of quantifier ambiguity illustrated
below in (3). The nominal arguments provide a semantic resource for each of their parts, i.e. the noun and
the quantifier. The noun resource corresponds to the first (complex) argument of the respective quantifier and
forms the restrictor of the quantification. Each quantifier introduces a free scope variable which is picked up by
the verbal root to form the appropriate semantic resource. Their respective semantic forms can be derived via
the Curry-Howard isomorphism resulting in the traditional first-order logic quantifiers.

All in all, we present a system for glue semantics at the core of which lies a simple but powerful glue prover.
The prover is supported by a module allowing to generate typed lambda-calculus formulas and the corresponding
lambda-calculus operations (e.g. β-conversion). Furthermore, the package comes with a module that translates
syntactic input into semantic resources, i.e. a system that generates a lexicon. The whole system is generated
with extensibility in mind and can find its uses both in active research of the syntax/semantics interface as well
as formal semantics and education on LFG and computational semantics.

(3) Every man owns a dog.

a. ∀x[man(x) → ∃z[dog(z) ∧ owns(x, z)]]
b. ∃z[dog(z) ∧ ∀x[man(x) → owns(x, z)]]

f



PRED ’own<man,dog>’

SUBJ g

PRED ’man’

DET
[
PRED ’every’

]
OBJ h

PRED ’dog’

DET
[
PRED ’a’

]
...


Figure 1: Sample f-structure (simplified)
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Figure 2: Correspondence between verb, nominal pred-
icates and quantifiers



Output of a sample derivation for the sentence ”Every man owns a dog” (surface scope):

(g ( g) : λy e.man(y) [ 0 ]
((g ( g) ( ((h( Y ) ( Y )) : λP < e, t > .λQ < e, t > .∀x[P (x)→ Q(x)] [ 1 ]
(i( i) : λx′ e.dog(x′) [ 2 ]
((i( i) ( ((j ( X) ( X)) : λR < e, t > .λS < e, t > .∃z[R(z) ∧ S(z)] [ 3 ]
(h( (j ( f)) : λx e.λy e.owns(x, y) [ 4 ]

Compiled r e s ou r c e s :
(g ( g) : λs e.man(s)[0]
(Y [{h}] ( (g ( Y )) : λu t.λt t.λQ < e, t > .λP < e, t > .∀y[P (y)→ Q(y)](λx e.t)(λx′ e.u)[1]
(i( i) : λv e.dog(v)[2]
(X′[{j}] ( (i( X′)) : λt′ t.λs′ t.λS < e, t > .λR < e, t > .∃z[R(z) ∧ S(z)](λy e.s′)(λy′ e.t′)[3]
(h( (j ( f)) : λu′ e.λv′ e.owns(u′, v′)[4]
{g} : x[5]
{h} : x′[6]
{i} : y[7]
{j} : y′[8]

Checking s imple prover . . .
Combining premises (i( i) : λv e.dog(v)[2] and {i} : y[7]
−−>i{i} : dog(y)[2, 7]

Combining premises {h} : x′[6] and (h( (j ( f)) : λu′ e.λv′ e.owns(u′, v′)[4]
−−>(j ( f){h} : λv′ e.owns(x′, v′)[4, 6]

Combining premises (j ( f){h} : λv′ e.owns(x′, v′)[4, 6] and {j} : y′[8]
−−>f{h, j} : owns(x′, y′)[4, 6, 8]

Combining premises f{h, j} : owns(x′, y′)[4, 6, 8]
and (X′[{j}] ( (i( X′)) : λt′ t.λs′ t.λS < e, t > .λR < e, t > .∃z[R(z) ∧ S(z)](λy e.s′)(λy′ e.t′)[3]
−−>(i[{i}] ( f){h} : λs′ t.λS < e, t > .λR < e, t > .∃z[R(z) ∧ S(z)](λy e.s′)(λy′ e.owns(x′, y′))[3, 4, 6, 8]

Combining premises (i[{i}] ( f){h} : λs′ t.λS < e, t > .λR < e, t > .∃z[R(z) ∧ S(z)](λy e.s′)(λy′ e.owns(x′, y′))[3, 4, 6, 8]
and i{i} : dog(y)[2, 7]
−−>f{h} : ∃z[dog(z) ∧ owns(x′, z)][2, 3, 4, 6, 7, 8]

Combining premises f{h} : ∃z[dog(z) ∧ owns(x′, z)][2, 3, 4, 6, 7, 8]
and (Y [{h}] ( (g ( Y )) : λu t.λt t.λQ < e, t > .λP < e, t > .∀y[P (y)→ Q(y)](λx e.t)(λx′ e.u)[1]
−−>(g[{g}] ( f) : λt t.λQ < e, t > .λP < e, t > .∀y[P (y)→ Q(y)](λx e.t)(λx′ e.∃z[dog(z) ∧ owns(x′, z)])[1, 2, 3, 4, 6, 7, 8]

Combining premises (g ( g) : λs e.man(s)[0] and {g} : x[5]
−−>g{g} : man(x)[0, 5]

Combining premises g{g} : man(x)[0, 5]
and (g[{g}] ( f) : λt t.λQ < e, t > .λP < e, t > .∀y[P (y)→ Q(y)](λx e.t)(λx′ e.∃z[dog(z) ∧ owns(x′, z)])[1, 2, 3, 4, 6, 7, 8]
−−>f : ∀y[man(y)→ ∃z[dog(z) ∧ owns(y, z)]][0, 1, 2, 3, 4, 5, 6, 7, 8]
. . .
Found va l i d deduct ion ( s ) :
f : ∀y[man(y)→ ∃z[dog(z) ∧ owns(y, z)]][0, 1, 2, 3, 4, 5, 6, 7, 8]
f : ∃z[dog(z) ∧ ∀y[man(y)→ owns(y, z)]][0, 1, 2, 3, 4, 5, 6, 7, 8]
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