Glue semantics for Universal Dependencies

Matthew Gotham and Dag Haug

University of Oslo
The 23rd International Lexical-Functional Grammar Conference 17 July 2018

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
- dependency structures $\approx f$-structures
- LFG inheritance in UD (via Stanford dependencies)
- Glue offers a syntax-semantics interace where syntax can underspecify semantics

Introduction

- Universal Dependencies (UD) is a de facto annotation standard for cross-linguistic annotation of syntactic structure
- \rightarrow interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
- dependency structures $\approx f$-structures
- LFG inheritance in UD (via Stanford dependencies)
- Glue offers a syntax-semantics interace where syntax can underspecify semantics
- Postpone the need for language-specific, lexical resources

Outline

(1) Target representations
(2) Universal Dependencies
(3) Our pipeline
4) Evaluation and discussion

Plan

(1) Target representations

(2) Universal Dependencies

(3) Our pipeline

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities $\left(x_{n}\right)$, eventualities $\left(e_{n}\right)$ and propositions $\left(p_{n}\right)$.

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities $\left(x_{n}\right)$, eventualities (e_{n}) and propositions $\left(p_{n}\right)$.
- The predicate ant means that its argument has an antecedent (it's a presupposed dref).
\rightarrow Also applies to the predicates beginning pron.-
- The connective ∂ marks presupposed conditions-it maps TRUE to TRUE and is otherwise undefined.
\rightarrow Unlike Boxer, which has separate DRSs for presupposed and asserted material.

An example

Us:
(1) Abrams persuaded the dog to bark.

Boxer:
$\left(\begin{array}{l|}\hline x_{2} \\ \hline \operatorname{dog}\left(x_{2}\right) \\ \left.\hline \begin{array}{l}x_{1} e_{1} p_{1} \\ \begin{array}{l}\text { named }\left(x_{1}, \text { abrams }\right) \\ \operatorname{persuade}\left(e_{1}\right) \\ \operatorname{agent}\left(e_{1}, x_{1}\right) \\ \text { theme }\left(e_{1}, x_{2}\right) \\ \operatorname{content}\left(e_{1}, p_{1}\right)\end{array} \\ p_{1}: \begin{array}{|l|}\hline \begin{array}{l}e_{2} \\ \operatorname{bark}\left(e_{2}\right) \\ \operatorname{agent}\left(e_{2}, x_{2}\right)\end{array} \\ \hline\end{array}\end{array}\right)\end{array}\right.$
$x_{1} x_{2} e_{1} p_{1}$
$\operatorname{named}\left(x_{1}\right.$, abrams $)$
$\operatorname{ant}\left(x_{2}\right)$
$\partial\left(\operatorname{dog}\left(x_{2}\right)\right)$
persuade $\left(e_{1}\right)$
agent $\left(e_{1}, x_{1}\right)$
theme $\left(e_{1}, x_{2}\right)$
content $\left(e_{1}, p_{1}\right)$

$p_{1}:$$|$| $\operatorname{bark}\left(e_{2}\right)$ |
| :--- |
| $\operatorname{agent}\left(e_{2}, x_{2}\right)$ |

Other running examples

(taken from the CCS development suite)
(2) He hemmed and hawed.

```
x ( }\mp@subsup{e}{1}{}\mp@subsup{e}{2}{
pron.he(x (x)
hem(eq)
agent(e}\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
haw(e2)
agent(e}\mp@subsup{e}{2}{},\mp@subsup{x}{1}{}
```

(3) The dog they thought we admired barks.

$\operatorname{ant}\left(x_{1}\right), \partial\left(\operatorname{dog}\left(x_{1}\right)\right)$	
pron.they (x_{2}), pron.we (x_{3})	
$\operatorname{bark}\left(e_{1}\right), \operatorname{agent}\left(e_{1}, x_{1}\right)$	
$\partial\left(\operatorname{think}\left(e_{2}\right)\right), \partial\left(\operatorname{agent}\left(e_{2}, x_{2}\right)\right)$	
$\partial\left(\right.$ content $\left.\left(e_{2}, p_{1}\right)\right)$	
	e_{3}
p_{1} :	admire $\left(e_{3}\right)$ $\operatorname{agent}\left(e_{3}, x_{3}\right)$ theme $\left(e_{3}, x_{1}\right)$

Underlying logic

- The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

$$
\text { someone } \rightsquigarrow \lambda P . \begin{array}{|l|}
\hline x_{1} \\
\hline \operatorname{person}\left(x_{1}\right)
\end{array} ; P\left(x_{1}\right)
$$

Underlying logic

- The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

$$
\text { someone } \rightsquigarrow \lambda P . \begin{array}{|l|}
\hline x_{1} \\
\hline \operatorname{person}\left(x_{1}\right)
\end{array} ; P\left(x_{1}\right)
$$

- Conceptually, we are assuming PCDRT (Haug, 2014), which has a definition of the ant predicate and (relatedly) a treatment of so-far-unresolved anaphora that doesn't require indexing.
- This specific assumption is not crucial, though.

Plan

(1) Target representations

(2) Universal Dependencies

(3) Our pipeline

'Manning's Law'

(from universaldependencies.org)
'[The UD design is] a very subtle compromise between approximately 6 things:
(1) UD needs to be satisfactory on linguistic analysis grounds for individual languages.
(2) UD needs to be good for linguistic typology [...].
(3) UD must be suitable for rapid, consistent annotation by a human annotator.
(1) UD must be suitable for computer parsing with high accuracy.
(3) UD must be easily comprehended and used by a non-linguist [...].
(UD must support well downstream language understanding tasks [...].

It's easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.'

Syntactic relations

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint
- There are also some UD-specific choices
- No argument/adjunct distinction

Theoretical considerations

- Dependency grammars have severe expressivity constraints
- Unique head constraint
- Overt token constraint
- There are also some UD-specific choices
- No argument/adjunct distinction
- Some of this will be alleviated through enhanced dependencies but those are not yet widely available

Coordination structure

Control structure

Relative clause structure

No argument/adjunct distinction

Plan

1) Target representations

(2) Universal Dependencies
(3) Our pipeline
4. Evaluation and discussion

Overview

Overview

- Traversal of the UD tree, matching each node against a rule file
- For each matched rule, a meaning constructor is produced...
- ... and then instantiated non-deterministically, possibly rewriting the UD tree in the process
- The result is a set of pairs $\langle M, T\rangle$ where M is a multiset of meaning constructors and T is a rewritten UD tree
- Each multiset is fed into a linear logic prover (by Miltiadis Kokkonidis) and beta reduction software (from Johan Bos' Boxer)

Example

Example

Example

Example

Example

Example

ROOT \mid
arrived
pos $=$ VERB
index $=2$

$$
\begin{aligned}
& \text { relation }=\mathrm{ROOT} \rightarrow \\
& \lambda_{-} .[\mid]: v(\downarrow) \multimap t(\downarrow)
\end{aligned}
$$

Example

Example

Interpretation in Glue

$$
\left(\lambda P . \begin{array}{|c|}
\hline x_{1} \\
\text { named }\left(x_{1}, \text { Peter }\right)
\end{array} ; P\left(x_{1}\right)\right)\left(\lambda y .\left(\lambda x . \lambda F . \begin{array}{|c}
\begin{array}{l}
e_{1} \\
\operatorname{arrive}\left(e_{1}\right) \\
\text { nsubj }\left(e_{1}, x\right)
\end{array}
\end{array} ; F\left(e_{1}\right)\right)(y)\left(\lambda V_{-} \square\right)\right)
$$

\rightsquigarrow_{β}| $x_{1} e_{1}$ |
| :--- |
| named $\left(x_{1}\right.$, Peter $)$
 $\operatorname{arrive}\left(e_{1}\right)$
 $\operatorname{nsubj}\left(e_{1}, x_{1}\right)$ |

$$
\begin{aligned}
& \text { 【arrived】: } \\
& \frac{e_{1} \multimap\left(v_{2} \multimap t_{2}\right) \multimap t_{2} \quad\left[y: e_{1}\right]^{1}}{\llbracket \operatorname{arrived} \rrbracket(y):\left(v_{2} \multimap t_{2}\right) \multimap t_{2}} \multimap_{E} \quad \begin{array}{l}
\llbracket r o o t \rrbracket: \\
v_{2} \multimap t_{2}
\end{array} \\
& \text { 【Peter】: } \\
& \left(e_{1} \multimap t_{2}\right) \multimap t_{2} \quad \overline{\lambda y \cdot \llbracket \text { arrived } \rrbracket(y)(\llbracket \operatorname{root} \rrbracket): e_{1} \multimap t_{2}} \multimap^{\circ} \mathrm{E}, 1 \\
& \llbracket \text { Peter } \rrbracket(\lambda y \cdot \llbracket \text { arrived } \rrbracket(y)(\llbracket \text { root } \rrbracket)): t_{2}
\end{aligned}
$$

Control

Control

$$
\begin{aligned}
& \left(e_{8} \multimap\left(v_{6} \multimap t_{6}\right) \multimap t_{6}\right) \\
& \\
& \multimap e_{4} \multimap e_{1} \multimap\left(v_{2} \multimap t_{2}\right) \multimap t_{2}
\end{aligned}
$$

$x_{1} x_{2} x_{3} e_{1} p_{1}$
named (x_{1}, abrams $)$, ant (x_{2})
$\partial\left(\operatorname{dog}\left(x_{2}\right)\right)$, persuade $\left(e_{1}\right)$
$\operatorname{nsubj}\left(e_{1}, x_{1}\right)$, obj $\left(e_{1}, x_{2}\right)$
controldep $\left(e_{1}, x_{3}\right), \operatorname{xcomp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| |
| $\operatorname{bark}\left(e_{2}\right)$
 $\operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

Relative clauses

Relative clauses

Relative clauses

Relative clauses

Other rules

```
relation = case; }\uparrow\uparrow{\mathrm{ coarsePos = VERB }}
    lam(Y,(lam(X,drs([ ],[rel(:LEMMA:,Y,X) ])))):e(\uparrow)}\multimap\textrm{v}(\uparrow\uparrow)\multimapt(\downarrow
relation = case; }\uparrow\uparrow{\mathrm{ coarsePos = VERB }}
relation = case }
    lam(Y,(\operatorname{lam}(X,drs([ ],[rel(:LEMMA:,Y,X) ])))) : e(\uparrow)\longrightarrowe(\uparrow\uparrow)\longrightarrowt(\downarrow)
coarsePos = DET, lemma =a; }\uparrow\operatorname{cop}{}
relation = conj; det { } }
lam(X,\operatorname{lam}(Q,\operatorname{lam}(C,\operatorname{lam}(Y,app(app(C,drs([],[leq(X,Y)])),app(app(Q,C),Y))))
    e}(\downarrow)\multimap((t(\uparrow)\multimapt(\uparrow)\multimapt(\uparrow))\multimapn(\uparrow))\multimap(t(\uparrow)\multimapt(\uparrow)\multimapt(\uparrow))\multimapn(\uparrow
```


Plan

(1) Target representations

(2) Universal Dependencies
(3) Our pipeline
4) Evaluation and discussion

Discussion of output

```
x1 e1
named(x},\mp@subsup{x}{1}{},\mathrm{ Peter)
arrive(e. }\mp@subsup{e}{1}{}
nsubj( }\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
```

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.

Discussion of output

$x_{1} e_{1}$
$\operatorname{named}\left(x_{1}\right.$, Peter $)$
$\operatorname{arrive}\left(e_{1}\right)$
$\operatorname{nsubj}\left(e_{1}, x_{1}\right)$

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (4) can be harnessed to further specify the meaning representation.
(4) $\quad \forall e \forall x((\operatorname{arrive}(e) \wedge \operatorname{nsubj}(e, x)) \rightarrow$ theme $(e, x))$

Discussion of output

```
x1 e1
named(x},\mp@subsup{x}{1}{},\mathrm{ Peter)
arrive(e}\mp@subsup{e}{1}{}
theme( }\mp@subsup{e}{1}{},\mp@subsup{x}{1}{}
```

- What kind of θ-role is 'nsubj'?
- A syntactic name, lifted from the arc label.
- In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (4) can be harnessed to further specify the meaning representation.
(4) $\quad \forall e \forall x((\operatorname{arrive}(e) \wedge \operatorname{nsubj}(e, x)) \rightarrow$ theme $(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right)$, controldep $\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, \operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right)$, controldep $\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, n \operatorname{subj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow \operatorname{obj}(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right), \operatorname{obj}\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, \operatorname{nsubj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow \operatorname{obj}(e, x))$

persuade $\left(e_{1}\right), \operatorname{obj}\left(e_{1}, x_{2}\right), \operatorname{obj}\left(e_{1}, x_{3}\right), x \operatorname{comp}\left(e_{1}, p_{1}\right)$

$p_{1}:$| e_{2} |
| :--- |
| $\ldots, n \operatorname{subj}\left(e_{2}, x_{3}\right)$ |

- The persuade + xcomp meaning constructor has
- introduced an xcomp relation between the persuading event e_{1} and the proposition p_{1} that there is a barking event e_{2}, and
- introduced an individual x_{3} as the nsubj of e_{2} and the controldep of e_{1}.
- But the information that persuade is an object control verb can again be encoded in a meaning postulate:
$\forall e \forall x(($ persuade $(e) \wedge \operatorname{controldep}(e, x)) \rightarrow o b j(e, x))$
- With thematic uniqueness, we get $x_{2}=x_{3}$ in this case.
- Blurs the distinction between lexical syntax and semantics.

VP/Sentence coordination: He hemmed and hawed

$x_{1} e_{2} e_{3}$
$\operatorname{pron.he}\left(x_{1}\right)$
$\operatorname{hem}\left(e_{2}\right)$
$\operatorname{nsubj}\left(e_{2}, x_{1}\right)$
$\operatorname{haw}\left(e_{3}\right)$

- No way to distinguish V/VP/S coordination in DG because of the overt token constraint
- No argument sharing because of the unique head constraint

NP Coordination: Abrams and/or Browne danced

$e_{1} x_{2} x_{3} x_{4}$
$\operatorname{dance}\left(e_{1}\right)$
$\operatorname{nsubj}\left(e, x_{2}\right)$
named $\left(x_{3}\right.$, browne $)$
named $\left(x_{4}\right.$, abrams $)$
$x_{3} \sqsubseteq x_{2}$
$x_{4} \sqsubseteq x_{2}$

$e_{1} x_{2} x_{3} x_{4}$ dance $\left(e_{1}\right)$ nsubj $\left(e, x_{2}\right)$ named $\left(x_{3}\right.$, browne $)$ named $\left(x_{4}\right.$, abrams $)$ $x_{3} \sqsubseteq x_{2}$

Argument/adjunct distinction

$e_{1} x_{2} x_{3}$
$\operatorname{rely}\left(e_{1}\right)$
named $\left(x_{2}\right.$, kim $)$
named $\left(x_{3}\right.$, sandy $)$
on $\left(x_{3}, e_{1}\right)$

$e_{1} x_{2} x_{3}$
leave $\left(e_{1}\right)$
named $\left(x_{2}\right.$, kim $)$
named $\left(x_{3}\right.$, tuesday $)$
on $\left(x_{3}, e_{1}\right)$

- Again, we will have to rely on meaning postulates to resolve the on relation to a thematic role in one case and a temporal relation in the other

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
- application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
- application of glue semantics to dependency structures

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
- application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
- application of glue semantics to dependency structures
- Very far from something practically useful
- Basic coverage of UD relations except vocative, dislocated, clf, list, parataxis, orphan
- Little or no work on interactions, special constructions, real data noise

Pros and cons of glue semantics

- No need for binarization
- Flexible approach to scoping yield different readings
- Hard to restrict unwanted/non-existing scopings
- Computing lots of uninteresting scope differences

Unwanted scopings

It is clear which DRS sentence-level operators (negation, auxiliaries etc.) should target!

- Modalities in the linear logic
- Different types for the two DRSs

Efficient scoping

- Two parameters:
- level of scope
- order of combination of quantifiers at each level
- We currently naively compute everything with a light-weight prover \rightarrow obvious performance problems
- Disallow intermediate scopings?
- Structure sharing across derivations (building on work in an LFG context)

Conclusions

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty

Conclusions

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation

Conclusions

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation
- Potentially useful for low-resource languages because of postponement of lexical knowledge

Conclusions

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation
- Potentially useful for low-resource languages because of postponement of lexical knowledge
- Allows combining a data-driven approach to syntactic parsing with a rule-driven interface to logic-based semantics
- But lots of work remains
- Support for partial proofs
- Axiomatization of lexical knowledge
- Ambiguity management

References I

Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In Proceedings of the 2008 conference on semantics in text processing STEP '08, 277-286. Stroudsburg, PA, USA: Association for Computational Linguistics. http://dl.acm.org/citation.cfm?id=1626481.1626503.
Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora. Journal of Semantics 31. 457-511.

