Glue semantics for Universal Dependencies

Matthew Gotham and Dag Haug

University of Oslo

The 23rd International Lexical-Functional Grammar Conference 17 July 2018

Gotham & Haug (Oslo)

LFG23 1 / 38

• Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure

(日) (同) (三) (三)

- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way

イロト 不得下 イヨト イヨト

- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
 - dependency structures \approx f-structures
 - LFG inheritance in UD (via Stanford dependencies)
 - Glue offers a syntax-semantics interace where syntax can underspecify semantics

イロト イポト イヨト イヨト 二日

- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
 - dependency structures \approx f-structures
 - LFG inheritance in UD (via Stanford dependencies)
 - Glue offers a syntax-semantics interace where syntax can underspecify semantics
- Postpone the need for language-specific, lexical resources

イロト 不得下 イヨト イヨト 二日

Outline

2 Universal Dependencies

Our pipeline

(日) (同) (三) (三)

Plan

2 Universal Dependencies

3 Our pipeline

(日) (同) (三) (三)

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).

· · · · · · · · ·

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities (*x_n*), eventualities (*e_n*) and propositions (*p_n*).

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities (x_n), eventualities (e_n) and propositions (p_n).
- The predicate *ant* means that its argument has an antecedent (it's a presupposed dref).
 - \rightarrow Also applies to the predicates beginning pron._
- The connective ∂ marks presupposed conditions—it maps TRUE to TRUE and is otherwise undefined.

 \rightarrow Unlike Boxer, which has separate DRSs for presupposed and asserted material.

イロト イポト イヨト イヨト

An example

(1)Abrams persuaded the dog to bark.

Boxer:

 X_2

Us:

 $x_1 x_2 e_1 p_1$ $named(x_1, abrams)$ $ant(x_2)$ $\partial(dog(x_2))$ $persuade(e_1)$ $agent(e_1, x_1)$ theme(e_1, x_2) $content(e_1, p_1)$ e_2 p_1 : bark(e_2) $agent(e_2, x_2)$

- 4 同 6 4 日 6 4 日 6

Other running examples (taken from the CCS development suite)

(2) He hemmed and hawed.

$x_1 e_1 e_2$
$pron.he(x_1)$ $hem(e_1)$ $agent(e_1, x_1)$
$haw(e_2)$ agent(e_2, x_1)
-8(•2,71)

(日) (同) (三) (三)

(3) The dog they thought we admired barks.

 $x_1 x_2 x_3 e_1 e_2 p_1$ $ant(x_1), \partial(dog(x_1))$ $pron.they(x_2), pron.we(x_3)$ $bark(e_1), agent(e_1, x_1)$ ∂ (think(e₂)), ∂ (agent(e₂, x₂)) ∂ (content(e_2, p_1)) e_3 $admire(e_3)$ p_1 : $agent(e_3, x_3)$ theme(e_3, x_1)

LFG23 8 / 38

Underlying logic

• The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ -DRT for meaning construction.

someone
$$\rightsquigarrow \lambda P$$
. x_1 $person(x_1)$; $P(x_1)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Underlying logic

 The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

someone
$$\rightsquigarrow \lambda P$$
. x_1 person(x_1); $P(x_1)$

- Conceptually, we are assuming PCDRT (Haug, 2014), which has a definition of the *ant* predicate and (relatedly) a treatment of so-far-unresolved anaphora that doesn't require indexing.
- This specific assumption is not crucial, though.

イロト イポト イヨト イヨト

Plan

3 Our pipeline

(日) (同) (三) (三)

'Manning's Law'

(from universaldependencies.org)

'[The UD design is] a very subtle compromise between approximately 6 things:

- UD needs to be satisfactory on linguistic analysis grounds for individual languages.
- OD needs to be good for linguistic typology [...].
- UD must be suitable for rapid, consistent annotation by a human annotator.
- UD must be suitable for computer parsing with high accuracy.
- UD must be easily comprehended and used by a non-linguist [...].
- UD must support well downstream language understanding tasks [...].

It's easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.'

Gotham & Haug (Oslo)

Glue for UD

LFG23 11 / 38

Syntactic relations

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj iobj	<u>csubj</u> ccomp xcomp		
Non-core dependents	<u>obl</u> vocative expl dislocated	<u>advcl</u>	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
<u>conj</u> <u>cc</u>	fixed flat compound	<u>list</u> parataxis	orphan goeswith reparandum	punct root dep
Gotham & Haug (Oslo)		Glue for UD		LFG23 12

Theoretical considerations

- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint

A B F A B F

Image: Image:

Theoretical considerations

- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint
- There are also some UD-specific choices
 - No argument/adjunct distinction

LFG23 13 / 38

3 D (3 D

Theoretical considerations

- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint
- There are also some UD-specific choices
 - No argument/adjunct distinction
- Some of this will be alleviated through enhanced dependencies but those are not yet widely available

Coordination structure

■ ■ つへで LFG23 14 / 38

Control structure

■ ● ■ のへの LFG23 15 / 38

イロト イポト イヨト イヨト

Relative clause structure

■ ● ■ つへで LFG23 16 / 38

No argument/adjunct distinction

■ ■ つへで LFG23 17 / 38

Plan

Target representations

2 Universal Dependencies

Our pipeline

Overview

■ ► ■ つへで LFG23 19 / 38

<ロ> (日) (日) (日) (日) (日)

Overview

- Traversal of the UD tree, matching each node against a rule file
- For each matched rule, a meaning constructor is produced...
- ... and then instantiated non-deterministically, possibly rewriting the UD tree in the process
- The result is a set of pairs (M, T) where M is a multiset of meaning constructors and T is a rewritten UD tree
- Each multiset is fed into a linear logic prover (by Miltiadis Kokkonidis) and beta reduction software (from Johan Bos' Boxer)

LFG23 20 / 38

イロト 不得下 イヨト イヨト

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = PROPN \rightarrow \lambda P.[x|named(x, :lemma:)]; P(x): (e_{\downarrow} \multimap t_{\%R}) \multimap t_{\%R}$$

■ ► ■ つへで LFG23 21 / 38

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = PROPN \rightarrow \lambda P.[x|named(x, Peter)]; P(x):$$

 $(e_1 \multimap t_2) \multimap t_2$

Gotham & Haug (Oslo)

■ ► ■ つへで LFG23 21 / 38

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$egin{aligned} \mathsf{pos} &= \mathsf{VERB}
ightarrow \ \lambda F.[e|:lemma:(e)]; :DEP:(e); F(e): \ (v_{\downarrow} \multimap t_{\downarrow}) \multimap t_{\downarrow} \end{aligned}$$

■ ► ■ つへで LFG23 21 / 38

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$egin{aligned} \mathsf{pos} &= \mathsf{VERB} o \ \lambda x.\lambda F.[e|\mathit{arrive}(e), \mathit{nsubj}(e,x)] \ ; F(e) : \ e_{\downarrow \mathit{nsubj}} \multimap (v_{\downarrow} \multimap t_{\downarrow}) \multimap t_{\downarrow} \end{aligned}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

■ ► ■ つへで LFG23 21 / 38

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = VERB \rightarrow \lambda x.\lambda F.[e|arrive(e), nsubj(e, x)]; F(e) : e_1 \multimap (v_2 \multimap t_2) \multimap t_2$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

■ ► ■ つへで LFG23 21 / 38

Example

ROOT arrived $\mathsf{relation} = \mathsf{ROOT} \rightarrow$ pos=VERB $\lambda_{-} [\mid] : v(\downarrow) \multimap t(\downarrow)$ index=2 NSUBJ Peter pos=PROPN index=1

■ ● ■ つへで LFG23 21 / 38

(日) (同) (三) (三)

Example

ROOT arrived $\mathsf{relation} = \mathsf{ROOT} \rightarrow$ pos=VERB λ_{-} .[] : $v_2 \multimap t_2$ index=2NSUBJ Peter pos=PROPN index=1

<ロ> (日) (日) (日) (日) (日)

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$\begin{split} \lambda P.[x_1 | named(x_1, Peter)] ; & P(x_1) : \\ & (e_1 \multimap t_2) \multimap t_2 \\ \lambda x. \lambda F.[e_1 | arrive(e_1), nsubj(e_1, x)] ; F(e_1) : \\ & e_1 \multimap (v_2 \multimap t_2) \multimap t_2 \\ \lambda_-.[\mid] : v_2 \multimap t_2 \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

■ ► ■ つへで LFG23 21 / 38

Interpretation in Glue

$$\begin{bmatrix} arrived \end{bmatrix} : \\ \frac{e_1 \multimap (v_2 \multimap t_2) \multimap t_2 \quad [y : e_1]^1}{[[arrived]](y) : (v_2 \multimap t_2) \multimap t_2} \multimap_E \quad [[root]] : \\ v_2 \multimap t_2} \\ \frac{[Peter]] : \\ (e_1 \multimap t_2) \multimap t_2 \quad \lambda y. [[arrived]](y) ([[root]]) : t_2}{[[Peter]](\lambda y. [[arrived]](y) ([[root]]) : t_1 \multimap t_2} \\ \neg E \\ (\lambda P. \underbrace{x_1 \\ named(x_1, Peter)}; P(x_1) \right) \left(\lambda y. \left(\lambda x. \lambda F. \underbrace{e_1 \\ arrive(e_1) \\ nsubj(e_1, x)}; F(e_1) \right) (y) \left(\lambda V. [\square] \right)$$

$$\overset{\times_{1} e_{1}}{\underset{arrive(e_{1})}{\overset{\longrightarrow_{\beta}}{arrive(e_{1})}}}$$

Gotham & Haug (Oslo)

■ ► ■ つへの LFG23 22 / 38

Control

$$egin{aligned} (e_{\downarrow ext{XCOMP} \ ext{NSUBJ}} & \multimap & (v_{\downarrow ext{XCOMP}} & \multimap & t_{\downarrow ext{XCOMP}}) & \multimap & t_{\downarrow ext{XCOMP}}) \ & \multimap & (e_{\downarrow ext{NSUBJ}}) & \multimap & (e_{\downarrow ext{OBJ}}) & \multimap & (v_{\downarrow} & \multimap & t_{\downarrow}) & \multimap & t_{\downarrow} \end{aligned}$$

Gotham & Haug (Oslo)

• • = • • = •

< m

Control

■ ● ■ のへで LFG23 23 / 38

A B A A B A

$$\begin{array}{c} [[persuade]]:\\ ((v_6 \multimap v_6) \multimap v_6) \multimap \\ (v_6 \lor v_6) \multimap \\ (v_6 \multimap v_6) \multimap \\ (v_6 \lor v_6) \lor \\ (v_6 \lor v_6 \lor \\ (v_6 \lor v_6) \lor \\ (v_6 \lor v_6) \lor \\ (v_6 \lor v_6 \lor \\ (v_6 \lor v_6) \lor \\ (v_6 \lor v_6 \lor \\ (v_6 \lor v_6) \lor \\ (v_6 \lor v_6 \lor \\ (v_6 \lor v_6 \lor \\ (v_6 \lor v_6) \lor \\$$

$$\begin{array}{c|c} x_1 & x_2 & x_3 & e_1 & p_1 \\ \hline named(x_1, abrams), ant(x_2) \\ \partial(dog(x_2)), persuade(e_1) \\ nsubj(e_1, x_1), obj(e_1, x_2) \\ controldep(e_1, x_3), xcomp(e_1, p_1) \\ \hline p_1 : \hline e_2 \\ p_1 : \hline bark(e_2) \\ nsubj(e_2, x_3) \\ \end{array}$$

Gotham & Haug (Oslo)

LFG23 24 / 38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

3 LFG23 25 / 38

(日) (周) (三) (三)

3

25 / 38

LFG23

Other rules

 $\begin{array}{l} \mbox{relation} = \mbox{case}; \uparrow\uparrow \{\mbox{coarsePos} = \mbox{VERB}\} \rightarrow \\ \mbox{lam}(\mbox{Y},(\mbox{lam}(\mbox{X},\mbox{drs}([\],[\mbox{rel}(:\mbox{LEMMA}:,\mbox{Y},\mbox{X})\])))): e(\uparrow) - \circ v(\uparrow\uparrow) - \circ t(\downarrow) \\ \mbox{relation} = \mbox{case}; \uparrow\uparrow \{\mbox{coarsePos} = \mbox{VERB}\} \rightarrow \\ \mbox{relation} = \mbox{case} \rightarrow \\ \mbox{lam}(\mbox{Y},(\mbox{lam}(\mbox{X},\mbox{drs}([\],[\mbox{rel}(:\mbox{LEMMA}:,\mbox{Y},\mbox{X})\])))): e(\uparrow) - \circ e(\uparrow\uparrow) - \circ t(\downarrow) \\ \end{array}$

```
coarsePos = DET, lemma = a; \uparrow cop { } \rightarrow
```

 $\begin{array}{l} \mbox{relation} = \mbox{conj; det } \{ \ \} \rightarrow \\ \mbox{lam}(X, \mbox{lam}(Q, \mbox{lam}(C, \mbox{lam}(Y, \mbox{app}(app(C, \mbox{drs}([], [\mbox{leq}(X, Y)])), \mbox{app}(app(Q, C), Y)))) \\ \mbox{e}(\downarrow) \mbox{-} (t(\uparrow) \mbox{-} t(\uparrow)) \mbox{-} n(\uparrow)) \mbox{-} (t(\uparrow) \mbox{-} t(\uparrow)) \mbox{-} n(\uparrow) \\ \end{array}$

Plan

Target representations

2) Universal Dependencies

3 Our pipeline

(日) (同) (三) (三)

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $nsubj(e_1, x_1)$

- What kind of θ -role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $nsubj(e_1, x_1)$

- What kind of *θ*-role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (4) can be harnessed to further specify the meaning representation.
- (4) $\forall e \forall x ((arrive(e) \land nsubj(e, x)) \rightarrow theme(e, x))$

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $theme(e_1, x_1)$

- What kind of *θ*-role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (4) can be harnessed to further specify the meaning representation.
- (4) $\forall e \forall x ((arrive(e) \land nsubj(e, x)) \rightarrow theme(e, x))$

 $x_1 x_2 x_3 e_1 p_1$

persuade(e_1), $obj(e_1, x_2)$, $controldep(e_1, x_3)$, $xcomp(e_1, p_1)$

- $p_1: \frac{e_2}{\ldots, nsubj(e_2, x_3)}$
- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .

*x*₁ *x*₂ *x*₃ *e*₁ *p*₁

. . .

 $persuade(e_1), obj(e_1, x_2), controldep(e_1, x_3), xcomp(e_1, p_1)$

 $p_1: \frac{e_2}{\ldots, nsubj(e_2, x_3)}$

- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$

 $x_1 x_2 x_3 e_1 p_1$

 $persuade(e_1), obj(e_1, x_2), obj(e_1, x_3), xcomp(e_1, p_1) \\ p_1 : \boxed{\frac{e_2}{\dots, nsubj(e_2, x_3)}}$

- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$

- 4 @ ▶ 4 @ ▶ 4 @ ▶

*x*₁ *x*₂ *x*₃ *e*₁ *p*₁

 $persuade(e_1), obj(e_1, x_2), obj(e_1, x_3), xcomp(e_1, p_1)$ $p_1 : \boxed{e_2} \\ \dots, nsubj(e_2, x_3)$

- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$

- With thematic uniqueness, we get $x_2 = x_3$ in this case.
- Blurs the distinction between lexical syntax and semantics.

VP/Sentence coordination: He hemmed and hawed

$$\begin{array}{c|c} x_1 \ e_2 \ e_3 \\ \hline pron.he(x_1) \\ hem(e_2) \\ nsubj(e_2, x_1) \\ haw(e_3) \end{array}$$

- $\bullet\,$ No way to distinguish V/VP/S coordination in DG because of the overt token constraint
- No argument sharing because of the unique head constraint

NP Coordination: Abrams and/or Browne danced

LFG23 31 / 38

過 ト イヨ ト イヨト

Argument/adjunct distinction

 Again, we will have to rely on meaning postulates to resolve the on relation to a thematic role in one case and a temporal relation in the other

LFG23 32 / 38

- 4 3 6 4 3 6

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
 - application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
 - application of glue semantics to dependency structures

(日) (同) (三) (三)

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
 - application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
 - application of glue semantics to dependency structures
- Very far from something practically useful
 - Basic coverage of UD relations except vocative, dislocated, clf, list, parataxis, orphan
 - Little or no work on interactions, special constructions, real data noise

LFG23 33 / 38

イロト 不得下 イヨト イヨト

Pros and cons of glue semantics

- No need for binarization
- Flexible approach to scoping yield different readings
- Hard to restrict unwanted/non-existing scopings
- Computing lots of uninteresting scope differences

Unwanted scopings

$$\lambda F. \begin{bmatrix} e \\ arrive(e) \end{bmatrix}; F(e) : (v_1 \multimap t_1) \multimap t_1$$
$$\lambda_{-}. \begin{bmatrix} \vdots v_1 \multimap t_1 \\ \vdots v_1 \multimap t_1 \end{bmatrix}$$

It is clear which DRS sentence-level operators (negation, auxiliaries etc.) should target!

- Modalities in the linear logic
- Different types for the two DRSs

- E > - E >

Efficient scoping

- Two parameters:
 - level of scope
 - order of combination of quantifiers at each level
- We currently naively compute everything with a light-weight prover \rightarrow obvious performance problems
- Disallow intermediate scopings?
- Structure sharing across derivations (building on work in an LFG context)

• Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty

(日) (同) (三) (三)

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation

< ロト < 同ト < ヨト < ヨト

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation
- Potentially useful for low-resource languages because of postponement of lexical knowledge

イロト イ理ト イヨト イヨト

- Theoretical achievement: application of glue to dependency grammar also exploiting other LFG techniques such as functional uncertainty
- Practical achievement: an interesting proof of concept implementation
- Potentially useful for low-resource languages because of postponement of lexical knowledge
- Allows combining a data-driven approach to syntactic parsing with a rule-driven interface to logic-based semantics
- But lots of work remains
 - Support for partial proofs
 - Axiomatization of lexical knowledge
 - Ambiguity management

イロト 不得下 イヨト イヨト

References I

Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In *Proceedings of the 2008 conference on semantics in text processing* STEP '08, 277–286. Stroudsburg, PA, USA: Association for Computational Linguistics.

http://dl.acm.org/citation.cfm?id=1626481.1626503.

Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora. *Journal of Semantics* 31. 457–511.

イロト イポト イヨト イヨト