
Glue semantics for Universal Dependencies

Matthew Gotham and Dag Haug

University of Oslo

The 23rd International Lexical-Functional Grammar Conference
17 July 2018

Gotham & Haug (Oslo) Glue for UD LFG23 1 / 38

Introduction

Universal Dependencies (UD) is a de facto annotation standard for
cross-linguistic annotation of syntactic structure

→ interest in deriving semantic representations from UD structures,
ideally in a language-independent way

Our approach: adapt and exploit techniques from LFG + Glue
semantics

dependency structures ≈ f-structures
LFG inheritance in UD (via Stanford dependencies)
Glue offers a syntax-semantics interace where syntax can underspecify
semantics

Postpone the need for language-specific, lexical resources

Gotham & Haug (Oslo) Glue for UD LFG23 2 / 38

Introduction

Universal Dependencies (UD) is a de facto annotation standard for
cross-linguistic annotation of syntactic structure

→ interest in deriving semantic representations from UD structures,
ideally in a language-independent way

Our approach: adapt and exploit techniques from LFG + Glue
semantics

dependency structures ≈ f-structures
LFG inheritance in UD (via Stanford dependencies)
Glue offers a syntax-semantics interace where syntax can underspecify
semantics

Postpone the need for language-specific, lexical resources

Gotham & Haug (Oslo) Glue for UD LFG23 2 / 38

Introduction

Universal Dependencies (UD) is a de facto annotation standard for
cross-linguistic annotation of syntactic structure

→ interest in deriving semantic representations from UD structures,
ideally in a language-independent way

Our approach: adapt and exploit techniques from LFG + Glue
semantics

dependency structures ≈ f-structures
LFG inheritance in UD (via Stanford dependencies)
Glue offers a syntax-semantics interace where syntax can underspecify
semantics

Postpone the need for language-specific, lexical resources

Gotham & Haug (Oslo) Glue for UD LFG23 2 / 38

Introduction

Universal Dependencies (UD) is a de facto annotation standard for
cross-linguistic annotation of syntactic structure

→ interest in deriving semantic representations from UD structures,
ideally in a language-independent way

Our approach: adapt and exploit techniques from LFG + Glue
semantics

dependency structures ≈ f-structures
LFG inheritance in UD (via Stanford dependencies)
Glue offers a syntax-semantics interace where syntax can underspecify
semantics

Postpone the need for language-specific, lexical resources

Gotham & Haug (Oslo) Glue for UD LFG23 2 / 38

Outline

1 Target representations

2 Universal Dependencies

3 Our pipeline

4 Evaluation and discussion

Gotham & Haug (Oslo) Glue for UD LFG23 3 / 38

Target representations

Plan

1 Target representations

2 Universal Dependencies

3 Our pipeline

4 Evaluation and discussion

Gotham & Haug (Oslo) Glue for UD LFG23 4 / 38

Target representations

Target representations

Our target representations for sentence meanings are DRSs.

The format of these DRSs is inspired by Boxer (Bos, 2008).

We assume discourse referents (drefs) of three sorts: entities (xn),
eventualities (en) and propositions (pn).

The predicate ant means that its argument has an antecedent (it’s a
presupposed dref).

→ Also applies to the predicates beginning pron.

The connective ∂ marks presupposed conditions—it maps true to
true and is otherwise undefined.

→ Unlike Boxer, which has separate DRSs for presupposed and
asserted material.

Gotham & Haug (Oslo) Glue for UD LFG23 5 / 38

Target representations

Target representations

Our target representations for sentence meanings are DRSs.

The format of these DRSs is inspired by Boxer (Bos, 2008).

We assume discourse referents (drefs) of three sorts: entities (xn),
eventualities (en) and propositions (pn).

The predicate ant means that its argument has an antecedent (it’s a
presupposed dref).

→ Also applies to the predicates beginning pron.

The connective ∂ marks presupposed conditions—it maps true to
true and is otherwise undefined.

→ Unlike Boxer, which has separate DRSs for presupposed and
asserted material.

Gotham & Haug (Oslo) Glue for UD LFG23 5 / 38

Target representations

Target representations

Our target representations for sentence meanings are DRSs.

The format of these DRSs is inspired by Boxer (Bos, 2008).

We assume discourse referents (drefs) of three sorts: entities (xn),
eventualities (en) and propositions (pn).

The predicate ant means that its argument has an antecedent (it’s a
presupposed dref).

→ Also applies to the predicates beginning pron.

The connective ∂ marks presupposed conditions—it maps true to
true and is otherwise undefined.

→ Unlike Boxer, which has separate DRSs for presupposed and
asserted material.

Gotham & Haug (Oslo) Glue for UD LFG23 5 / 38

Target representations

An example

(1) Abrams persuaded the dog to bark.

Boxer:

(
x2
dog(x2)

+

x1 e1 p1
named(x1, abrams)
persuade(e1)
agent(e1, x1)
theme(e1, x2)
content(e1, p1)

p1 :

e2
bark(e2)
agent(e2, x2)

)

Us:

x1 x2 e1 p1
named(x1, abrams)
ant(x2)
∂(dog(x2))
persuade(e1)
agent(e1, x1)
theme(e1, x2)
content(e1, p1)

p1 :

e2
bark(e2)
agent(e2, x2)

Gotham & Haug (Oslo) Glue for UD LFG23 6 / 38

Target representations

Other running examples
(taken from the CCS development suite)

(2) He hemmed and hawed.

x1 e1 e2

pron.he(x1)
hem(e1)
agent(e1, x1)
haw(e2)
agent(e2, x1)

Gotham & Haug (Oslo) Glue for UD LFG23 7 / 38

Target representations

(3) The dog they thought we admired barks.

x1 x2 x3 e1 e2 p1

ant(x1), ∂(dog(x1))
pron.they(x2), pron.we(x3)
bark(e1), agent(e1, x1)
∂(think(e2)), ∂(agent(e2, x2))
∂(content(e2, p1))

p1 :

e3

admire(e3)
agent(e3, x3)
theme(e3, x1)

Gotham & Haug (Oslo) Glue for UD LFG23 8 / 38

Target representations

Underlying logic

The Glue approach relies on meanings being put together by
application and abstraction, so we need some form of compositional
or λ-DRT for meaning construction.

someone λP.
x1
person(x1)

; P(x1)

Conceptually, we are assuming PCDRT (Haug, 2014), which has a
definition of the ant predicate and (relatedly) a treatment of
so-far-unresolved anaphora that doesn’t require indexing.

This specific assumption is not crucial, though.

Gotham & Haug (Oslo) Glue for UD LFG23 9 / 38

Target representations

Underlying logic

The Glue approach relies on meanings being put together by
application and abstraction, so we need some form of compositional
or λ-DRT for meaning construction.

someone λP.
x1
person(x1)

; P(x1)

Conceptually, we are assuming PCDRT (Haug, 2014), which has a
definition of the ant predicate and (relatedly) a treatment of
so-far-unresolved anaphora that doesn’t require indexing.

This specific assumption is not crucial, though.

Gotham & Haug (Oslo) Glue for UD LFG23 9 / 38

Universal Dependencies

Plan

1 Target representations

2 Universal Dependencies

3 Our pipeline

4 Evaluation and discussion

Gotham & Haug (Oslo) Glue for UD LFG23 10 / 38

Universal Dependencies

‘Manning’s Law’
(from universaldependencies.org)

‘[The UD design is] a very subtle compromise between approximately 6
things:

1 UD needs to be satisfactory on linguistic analysis grounds for
individual languages.

2 UD needs to be good for linguistic typology [. . .].
3 UD must be suitable for rapid, consistent annotation by a human

annotator.
4 UD must be suitable for computer parsing with high accuracy.
5 UD must be easily comprehended and used by a non-linguist [. . .].
6 UD must support well downstream language understanding tasks

[. . .].

It’s easy to come up with a proposal that improves UD on one of these
dimensions. The interesting and difficult part is to improve UD while
remaining sensitive to all these dimensions.’

Gotham & Haug (Oslo) Glue for UD LFG23 11 / 38

universaldependencies.org

Universal Dependencies

Syntactic relations

Gotham & Haug (Oslo) Glue for UD LFG23 12 / 38

Universal Dependencies

Theoretical considerations

Dependency grammars have severe expressivity constraints

Unique head constraint
Overt token constraint

There are also some UD-specific choices

No argument/adjunct distinction

Some of this will be alleviated through enhanced dependencies but
those are not yet widely available

Gotham & Haug (Oslo) Glue for UD LFG23 13 / 38

Universal Dependencies

Theoretical considerations

Dependency grammars have severe expressivity constraints

Unique head constraint
Overt token constraint

There are also some UD-specific choices

No argument/adjunct distinction

Some of this will be alleviated through enhanced dependencies but
those are not yet widely available

Gotham & Haug (Oslo) Glue for UD LFG23 13 / 38

Universal Dependencies

Theoretical considerations

Dependency grammars have severe expressivity constraints

Unique head constraint
Overt token constraint

There are also some UD-specific choices

No argument/adjunct distinction

Some of this will be alleviated through enhanced dependencies but
those are not yet widely available

Gotham & Haug (Oslo) Glue for UD LFG23 13 / 38

Universal Dependencies

Coordination structure

Gotham & Haug (Oslo) Glue for UD LFG23 14 / 38

Universal Dependencies

Control structure

Gotham & Haug (Oslo) Glue for UD LFG23 15 / 38

Universal Dependencies

Relative clause structure

Gotham & Haug (Oslo) Glue for UD LFG23 16 / 38

Universal Dependencies

No argument/adjunct distinction

Gotham & Haug (Oslo) Glue for UD LFG23 17 / 38

Our pipeline

Plan

1 Target representations

2 Universal Dependencies

3 Our pipeline

4 Evaluation and discussion

Gotham & Haug (Oslo) Glue for UD LFG23 18 / 38

Our pipeline

Overview

Proof
3 // DRS

Multiset
of meaning

constructors +
rewritten

tree

2

77

// . . .

UD tree

1 77

// . . .

Gotham & Haug (Oslo) Glue for UD LFG23 19 / 38

Our pipeline

Overview

Traversal of the UD tree, matching each node against a rule file

For each matched rule, a meaning constructor is produced. . .

. . . and then instantiated non-deterministically, possibly rewriting the
UD tree in the process

The result is a set of pairs 〈M,T 〉 where M is a multiset of meaning
constructors and T is a rewritten UD tree

Each multiset is fed into a linear logic prover (by Miltiadis
Kokkonidis) and beta reduction software (from Johan Bos’ Boxer)

Gotham & Haug (Oslo) Glue for UD LFG23 20 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

pos = PROPN →
λP.[x |named(x , :lemma:)] ; P(x) :
(e↓(t%R)(t%R

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

pos = PROPN →
λP.[x |named(x ,Peter)] ; P(x) :
(e1(t2)(t2

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

pos = VERB →
λF .[e|:lemma:(e)]; :DEP:(e);F (e) :
(v↓(t↓)(t↓

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

pos = VERB →
λx .λF .[e|arrive(e), nsubj(e, x)] ;F (e) :
e↓nsubj ((v↓(t↓)(t↓

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

pos = VERB →
λx .λF .[e|arrive(e), nsubj(e, x)] ;F (e) :
e1((v2(t2)(t2

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

relation = ROOT →
λ .[|] : v(↓)(t(↓)

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

relation = ROOT →
λ .[|] : v2(t2

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Example

arrived
pos=VERB

index=2

Peter
pos=PROPN

index=1

nsubj

root

λP.[x1|named(x1,Peter)] ; P(x1) :
(e1(t2)(t2

λx .λF .[e1|arrive(e1), nsubj(e1, x)] ;F (e1) :
e1((v2(t2)(t2

λ .[|] : v2(t2

Gotham & Haug (Oslo) Glue for UD LFG23 21 / 38

Our pipeline

Interpretation in Glue

JPeterK :
(e1(t2)(t2

JarrivedK :
e1((v2(t2)(t2 [y : e1]1

JarrivedK(y) : (v2(t2)(t2
(E

JrootK :
v2(t2

JarrivedK(y)(JrootK) : t2
(E

λy .JarrivedK(y)(JrootK) : e1(t2
(I ,1

JPeterK(λy .JarrivedK(y)(JrootK)) : t2
(E

(
λP.

x1
named(x1,Peter)

;P(x1)

)λy .
λx .λF . e1

arrive(e1)
nsubj(e1, x)

;F (e1)

 (y)

(
λV .

)

 β

x1 e1
named(x1,Peter)
arrive(e1)
nsubj(e1, x1)

Gotham & Haug (Oslo) Glue for UD LFG23 22 / 38

Our pipeline

Control

persuade

bark

to

mark

dog

the

det

Abrams

nsubj
obj

xcomp

root

λP.λy .λx .λF .

e1 x1 x2

persuade(e1)
controldep(e1, x2)
xcomp(e1, x1)
obj(e1, y)
nsubj(e1, x)
q : P(x2)(λ .[|])

; F (e1)

(e↓xcomp nsubj((v↓xcomp(t↓xcomp)(t↓xcomp)
((e↓nsubj)((e↓obj)((v↓(t↓)(t↓

Gotham & Haug (Oslo) Glue for UD LFG23 23 / 38

Our pipeline

Control

persuade

bark

*to

mark nsubj

dog

the

det

Abrams

nsubj
obj

xcomp

root

λP.λy .λx .λF .

e1 x1 x2

persuade(e1)
controldep(e1, x2)
xcomp(e1, x1)
obj(e1, y)
nsubj(e1, x)
q : P(x2)(λ .[|])

; F (e1)

(e8((v6(t6)(t6)

(e4(e1((v2(t2)(t2

Gotham & Haug (Oslo) Glue for UD LFG23 23 / 38

Our pipeline

JAbramsK :
(e1(t2)(t2

...
JtheK(JdogK) :

(e4(t2)(t2

JpersuadeK :
((v6(t6)(t6)(

e4(e1((v2(t2)(t2

JbarkK :
(v6(t6)(t6

JpersuadeK(JbarkK) : e4(e1((v2(t2)(t2 [u : e4]1

JpersuadeK(JbarkK)(u) : e1((v2(t2)(t2 [v : e1]2

JpersuadeK(JbarkK)(u)(v) : (v2(t2)(t2
JrootK :
v2(t2

JpersuadeK(JbarkK)(u)(v)(JrootK) : t2
λu.JpersuadeK(JbarkK)(u)(v)(JrootK) : e4(t2

1

JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK)) : t2
λv .JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK)) : e1(t2

2

JAbramsK(λv .JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK))) : t2

 β

x1 x2 x3 e1 p1
named(x1, abrams), ant(x2)
∂(dog(x2)), persuade(e1)
nsubj(e1, x1), obj(e1, x2)
controldep(e1, x3), xcomp(e1, p1)

p1 :

e2
bark(e2)
nsubj(e2, x3)

Gotham & Haug (Oslo) Glue for UD LFG23 24 / 38

Our pipeline

Relative clauses

barks

dog

thought

admired

we

nsubj

they

nsubj ccomp

the

det acl:relcl

nsubj

root

λP.λV .λx .P(x);V (x)(λ .[|])

(e↑ (t↑)(
(e↓dep∗dep{PType=Rel} ((v↓ (t↓)(t↓)(

e↑ (t↑

Gotham & Haug (Oslo) Glue for UD LFG23 25 / 38

Our pipeline

Relative clauses

barks

dog

thought

admired

we*

dep nsubj

they

nsubj ccomp

the

det acl:relcl

nsubj

root

λP.λV .λx .P(x);V (x)(λ .[|])

(e2 (t2)(
(e9 ((v4 (t4)(t4)(

e2 (t2

Gotham & Haug (Oslo) Glue for UD LFG23 25 / 38

Our pipeline

Relative clauses

barks

dog

thought

admired

we

nsubj

*they

nsubj
dep

ccomp

the

det acl:relcl

nsubj

root

λP.λV .λx .P(x);V (x)(λ .[|])

(e2 (t2)(
(e9 ((v4 (t4)(t4)(

e2 (t2

Gotham & Haug (Oslo) Glue for UD LFG23 25 / 38

Our pipeline

Relative clauses

barks

dog

thought

admired

we

nsubj

they

*

dep

nsubj ccomp

the

det acl:relcl

nsubj

root

λP.λV .λx .P(x);V (x)(λ .[|])

(e2 (t2)(
(e9 ((v4 (t4)(t4)(

e2 (t2

Gotham & Haug (Oslo) Glue for UD LFG23 25 / 38

Our pipeline

Other rules

relation = case; ↑↑ {coarsePos = VERB} →
lam(Y,(lam(X,drs([],[rel(:LEMMA:,Y,X)])))) : e(↑)(v(↑↑)(t(↓)

relation = case; ↑↑ {coarsePos = VERB} →
relation = case →

lam(Y,(lam(X,drs([],[rel(:LEMMA:,Y,X)])))) : e(↑)(e(↑↑)(t(↓)

coarsePos = DET, lemma = a; ↑ cop { } →

relation = conj; det { } →
lam(X,lam(Q,lam(C,lam(Y,app(app(C,drs([],[leq(X,Y)])),app(app(Q,C),Y))))))

e(↓)(((t(↑)(t(↑)(t(↑))(n(↑))((t(↑)(t(↑)(t(↑))(n(↑)

Gotham & Haug (Oslo) Glue for UD LFG23 26 / 38

Evaluation and discussion

Plan

1 Target representations

2 Universal Dependencies

3 Our pipeline

4 Evaluation and discussion

Gotham & Haug (Oslo) Glue for UD LFG23 27 / 38

Evaluation and discussion

Discussion of output

x1 e1
named(x1,Peter)
arrive(e1)
nsubj(e1, x1)

What kind of θ-role is ‘nsubj’?

A syntactic name, lifted from the arc label.
In and of itself, uninformative.

What we have in the DRS above is as much information as can be
extracted from the UD tree alone, without lexical knowledge.

Lexical knowledge in the form of meaning postulates such as (4) can
be harnessed to further specify the meaning representation.

(4) ∀e∀x((arrive(e) ∧ nsubj(e, x))→ theme(e, x))

Gotham & Haug (Oslo) Glue for UD LFG23 28 / 38

Evaluation and discussion

Discussion of output

x1 e1
named(x1,Peter)
arrive(e1)
nsubj(e1, x1)

What kind of θ-role is ‘nsubj’?

A syntactic name, lifted from the arc label.
In and of itself, uninformative.

What we have in the DRS above is as much information as can be
extracted from the UD tree alone, without lexical knowledge.

Lexical knowledge in the form of meaning postulates such as (4) can
be harnessed to further specify the meaning representation.

(4) ∀e∀x((arrive(e) ∧ nsubj(e, x))→ theme(e, x))

Gotham & Haug (Oslo) Glue for UD LFG23 28 / 38

Evaluation and discussion

Discussion of output

x1 e1
named(x1,Peter)
arrive(e1)
theme(e1, x1)

What kind of θ-role is ‘nsubj’?

A syntactic name, lifted from the arc label.
In and of itself, uninformative.

What we have in the DRS above is as much information as can be
extracted from the UD tree alone, without lexical knowledge.

Lexical knowledge in the form of meaning postulates such as (4) can
be harnessed to further specify the meaning representation.

(4) ∀e∀x((arrive(e) ∧ nsubj(e, x))→ theme(e, x))

Gotham & Haug (Oslo) Glue for UD LFG23 28 / 38

Evaluation and discussion

x1 x2 x3 e1 p1
. . .
persuade(e1), obj(e1, x2), controldep(e1, x3), xcomp(e1, p1)

p1 :
e2
. . . , nsubj(e2, x3)

The persuade + xcomp meaning constructor has

introduced an xcomp relation between the persuading event e1 and the
proposition p1 that there is a barking event e2, and
introduced an individual x3 as the nsubj of e2 and the controldep of e1.

But the information that persuade is an object control verb can again
be encoded in a meaning postulate:

∀e∀x((persuade(e) ∧ controldep(e, x))→ obj(e, x))

With thematic uniqueness, we get x2 = x3 in this case.

Blurs the distinction between lexical syntax and semantics.

Gotham & Haug (Oslo) Glue for UD LFG23 29 / 38

Evaluation and discussion

x1 x2 x3 e1 p1
. . .
persuade(e1), obj(e1, x2), controldep(e1, x3), xcomp(e1, p1)

p1 :
e2
. . . , nsubj(e2, x3)

The persuade + xcomp meaning constructor has

introduced an xcomp relation between the persuading event e1 and the
proposition p1 that there is a barking event e2, and
introduced an individual x3 as the nsubj of e2 and the controldep of e1.

But the information that persuade is an object control verb can again
be encoded in a meaning postulate:

∀e∀x((persuade(e) ∧ controldep(e, x))→ obj(e, x))

With thematic uniqueness, we get x2 = x3 in this case.

Blurs the distinction between lexical syntax and semantics.

Gotham & Haug (Oslo) Glue for UD LFG23 29 / 38

Evaluation and discussion

x1 x2 x3 e1 p1
. . .
persuade(e1), obj(e1, x2), obj(e1, x3), xcomp(e1, p1)

p1 :
e2
. . . , nsubj(e2, x3)

The persuade + xcomp meaning constructor has

introduced an xcomp relation between the persuading event e1 and the
proposition p1 that there is a barking event e2, and
introduced an individual x3 as the nsubj of e2 and the controldep of e1.

But the information that persuade is an object control verb can again
be encoded in a meaning postulate:

∀e∀x((persuade(e) ∧ controldep(e, x))→ obj(e, x))

With thematic uniqueness, we get x2 = x3 in this case.

Blurs the distinction between lexical syntax and semantics.

Gotham & Haug (Oslo) Glue for UD LFG23 29 / 38

Evaluation and discussion

x1 x2 x3 e1 p1
. . .
persuade(e1), obj(e1, x2), obj(e1, x3), xcomp(e1, p1)

p1 :
e2
. . . , nsubj(e2, x3)

The persuade + xcomp meaning constructor has

introduced an xcomp relation between the persuading event e1 and the
proposition p1 that there is a barking event e2, and
introduced an individual x3 as the nsubj of e2 and the controldep of e1.

But the information that persuade is an object control verb can again
be encoded in a meaning postulate:

∀e∀x((persuade(e) ∧ controldep(e, x))→ obj(e, x))

With thematic uniqueness, we get x2 = x3 in this case.

Blurs the distinction between lexical syntax and semantics.

Gotham & Haug (Oslo) Glue for UD LFG23 29 / 38

Evaluation and discussion

VP/Sentence coordination: He hemmed and hawed

x1 e2 e3

pron.he(x1)
hem(e2)
nsubj(e2, x1)
haw(e3)

No way to distinguish V/VP/S coordination in DG because of the
overt token constraint

No argument sharing because of the unique head constraint

Gotham & Haug (Oslo) Glue for UD LFG23 30 / 38

Evaluation and discussion

NP Coordination: Abrams and/or Browne danced

e1 x2 x3 x4

dance(e1)
nsubj(e,x2)
named(x3, browne)
named(x4, abrams)
x3 v x2
x4 v x2

e1 x2 x3 x4

dance(e1)
nsubj(e,x2)
named(x3, browne)
named(x4, abrams)

x3 v x2
∨

x4 v x2

Gotham & Haug (Oslo) Glue for UD LFG23 31 / 38

Evaluation and discussion

Argument/adjunct distinction

e1 x2 x3

rely(e1)
named(x2, kim)
named(x3, sandy)
on(x3, e1)

e1 x2 x3

leave(e1)
named(x2, kim)
named(x3, tuesday)
on(x3, e1)

Again, we will have to rely on meaning postulates to resolve the on
relation to a thematic role in one case and a temporal relation in the
other

Gotham & Haug (Oslo) Glue for UD LFG23 32 / 38

Evaluation and discussion

Evaluation

What we have so far is a proof of concept tested on carefully crafted
examples

application of LFG techniques (functional uncertainties) to enrich
underspecified UD syntax
application of glue semantics to dependency structures

Very far from something practically useful

Basic coverage of UD relations except vocative, dislocated, clf,

list, parataxis, orphan

Little or no work on interactions, special constructions, real data noise

Gotham & Haug (Oslo) Glue for UD LFG23 33 / 38

Evaluation and discussion

Evaluation

What we have so far is a proof of concept tested on carefully crafted
examples

application of LFG techniques (functional uncertainties) to enrich
underspecified UD syntax
application of glue semantics to dependency structures

Very far from something practically useful

Basic coverage of UD relations except vocative, dislocated, clf,

list, parataxis, orphan

Little or no work on interactions, special constructions, real data noise

Gotham & Haug (Oslo) Glue for UD LFG23 33 / 38

Evaluation and discussion

Pros and cons of glue semantics

No need for binarization

Flexible approach to scoping yield different readings

Hard to restrict unwanted/non-existing scopings

Computing lots of uninteresting scope differences

Gotham & Haug (Oslo) Glue for UD LFG23 34 / 38

Evaluation and discussion

Unwanted scopings

λF .

e

arrive(e)
;F (e) : (v1(t1)(t1

λ . : v1(t1

It is clear which DRS sentence-level operators (negation, auxiliaries etc.)
should target!

Modalities in the linear logic

Different types for the two DRSs

Gotham & Haug (Oslo) Glue for UD LFG23 35 / 38

Evaluation and discussion

Efficient scoping

Two parameters:

level of scope
order of combination of quantifiers at each level

We currently naively compute everything with a light-weight prover
→ obvious performance problems

Disallow intermediate scopings?

Structure sharing across derivations (building on work in an LFG
context)

Gotham & Haug (Oslo) Glue for UD LFG23 36 / 38

Evaluation and discussion

Conclusions

Theoretical achievement: application of glue to dependency grammar
also exploiting other LFG techniques such as functional uncertainty

Practical achievement: an interesting proof of concept
implementation

Potentially useful for low-resource languages because of
postponement of lexical knowledge

Allows combining a data-driven approach to syntactic parsing with a
rule-driven interface to logic-based semantics

But lots of work remains

Support for partial proofs
Axiomatization of lexical knowledge
Ambiguity management

Gotham & Haug (Oslo) Glue for UD LFG23 37 / 38

Evaluation and discussion

Conclusions

Theoretical achievement: application of glue to dependency grammar
also exploiting other LFG techniques such as functional uncertainty

Practical achievement: an interesting proof of concept
implementation

Potentially useful for low-resource languages because of
postponement of lexical knowledge

Allows combining a data-driven approach to syntactic parsing with a
rule-driven interface to logic-based semantics

But lots of work remains

Support for partial proofs
Axiomatization of lexical knowledge
Ambiguity management

Gotham & Haug (Oslo) Glue for UD LFG23 37 / 38

Evaluation and discussion

Conclusions

Theoretical achievement: application of glue to dependency grammar
also exploiting other LFG techniques such as functional uncertainty

Practical achievement: an interesting proof of concept
implementation

Potentially useful for low-resource languages because of
postponement of lexical knowledge

Allows combining a data-driven approach to syntactic parsing with a
rule-driven interface to logic-based semantics

But lots of work remains

Support for partial proofs
Axiomatization of lexical knowledge
Ambiguity management

Gotham & Haug (Oslo) Glue for UD LFG23 37 / 38

Evaluation and discussion

Conclusions

Theoretical achievement: application of glue to dependency grammar
also exploiting other LFG techniques such as functional uncertainty

Practical achievement: an interesting proof of concept
implementation

Potentially useful for low-resource languages because of
postponement of lexical knowledge

Allows combining a data-driven approach to syntactic parsing with a
rule-driven interface to logic-based semantics

But lots of work remains

Support for partial proofs
Axiomatization of lexical knowledge
Ambiguity management

Gotham & Haug (Oslo) Glue for UD LFG23 37 / 38

Evaluation and discussion

References I

Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In
Proceedings of the 2008 conference on semantics in text processing
STEP ’08, 277–286. Stroudsburg, PA, USA: Association for
Computational Linguistics.
http://dl.acm.org/citation.cfm?id=1626481.1626503.

Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora.
Journal of Semantics 31. 457–511.

Gotham & Haug (Oslo) Glue for UD LFG23 38 / 38

http://dl.acm.org/citation.cfm?id=1626481.1626503

	Target representations
	Universal Dependencies
	Our pipeline
	Evaluation and discussion

