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About

GOAL: Providing a modular, easy to use glue semantics tool
written in Java that is useful for both computational linguists
and formal semanticists

Provide a tractable, efficient implementation of (a fragment
of) linear logic
Modular system that can be connected to various NLP
pipelines, in particular XLE (Crouch et al., 2017), Stanford
CoreNLP (Manning et al., 2014) with minimal effort
Illustration of the system by means of a classic formal semantic
phenomenon
Free to use open-source software
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Some existing resources:

NLTK computational semantics package (Python)

glue implementation PARC by Richard Crouch and colleagues
(Prolog)

”Instant Glue” prover by Miltiadis Kokkonidis (Prolog)

glue prover algorithm outlined by (Lev, 2007)

→ served as initial guiding points
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Why Java?

object-oriented paradigm fits resource-sensitive nature of
linear logic

possibility to modularize the program

many interfaces to libraries like the Stanford CoreNLP tools

Java virtual machines ubiquitous across all operating systems

Java is widely used both in academic and industrial software
development
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Background on linear logic

“[glue semantics] is an approach to the semantic interpretation of
natural language that uses a fragment of linear logic as a deductive

glue for combining together the meanings of words and phrases”
–Crouch and van Genabith, (2000)

linear logic (LL) is a resource-conscious logic
premises, assumptions and conclusions as used in logical
proofs are resources (not truths or facts)

A,A → B,A → C |= A,B,C traditional
vs. A,A ( B,A ( C 6|= A,B,C LL

a sentence denotes a successful linear logic proof

→ all resources introduced by the sentence have to be consumed
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The appeal of linear logic

syntax of proof systems of ”traditional” logics is not always in
one-to-one correspondence to the underlying proof object

→ LL better suited to describe underlying proof objects

resource usage occurs in natural language: Words and phrases
correspond to resources

(Certain fragments) can be implemented in a tractable manner
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Some technicalities

lexical entries consist of two elements:

glue language: linear logic – can be understood as semantic
types (Curry-Howard-isomorphism)
meaning language Montague style semantics (but other
formalism are possible)

ex. λx .sleep(x) : A ( B

ex. λP.λQ.∃x [P(x) ∧ Q(x)] : (A ( B) ( ((C ( D) ( D)
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Relevant rules

we use the implicational fragment of linear logic

Introduction rule

[x : A]i
...

f (x) : B
(I ,i

λx .f (x) : A ( B

Elimination rule

f : A ( B a : A (E
f (a) : B
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Semantic composition as proof

John loves Mary.

lexical entries:

JJohnK = j : g
JMaryK = m : h
JlovesK = λx .λy .loves(x , y) : g ( (h ( f )

λx .λy .loves(x , y) : g ( (h ( f ) j : g

λy .loves(j , y) : h ( f m : h

loves(j ,m) : f
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From syntax to semantics


PRED ’love<John,Mary>’

SUBJ
[
PRED ’John’

]
OBJ

[
PRED ’Mary’

]


λx .λy .loves(x , y) :
↑ .SUBJ ( (↑ .OBJ (↑)

j :↑ .SUBJ
m :↑ .OBJ

↑ refers to a specific f-structure node (e.g. ↑ points to the
outer f-structure; ↑ .SUBJ points to the f-structure node of
the subject)

syntactic analysis determines linear logic resources (see e.g.
Dalrymple, 2001 and subsequent work)

traditionally co-descriptive, but description-by-analysis also
possible (Kaplan, 1995)
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Modules
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Prover algorithm

based on three principles, taken from algorithms by Hepple, (1996)
and Gupta and Lamping, (1998)

I indexation

II compilation

III skeleton-modifier distinction
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Hepple, (1996): Basic chart prover

Indexation

Hepple parser stores partial results and re-uses them to
prevent backtracking

linear use of resources enforced by using indexes
each LL formula (=premise) assigned unique index
when combining premises their index sets are unified
two premises can only be combined when their index sets are
disjoint

Example:

j : g [0]
λx .sleeps(x) : g ( f [1]
sleeps(j) : f [0,1]
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first-order chart prover pseudo code

Stack A (agenda)
List D (database)
for A contains premises do

pop premise PA

add PA to D
for all Premises PD in D do

if PA and PD combinable and index sets disjoint then
add new combined premise to A

end if
end for

end for
if any PD from D has a full set of indexes it is a valid solution
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higher-order chart prover

Compilation

higher-order formulas with nested consumers usually require
(-introduction

hypothetical reasoning makes computation very complex

Hepple’s solution: transform the initial (potentially
higher-order) formulas into a set of first-order formulas

nested consumers are ”compiled out” to additional
assumptions:
(a ( b) ( c [0] ⇒

b[a] ( c [0]
{a} [1]
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Higher-order chart prover

extracted assumptions are marked as such (notated with {})
and assigned a new unique index

formula from which assumption is extracted gets extracted
resource as discharge (notated with [ ])

rules to assure that only the right premises combine:

if one or both premises contain assumptions, these are added
to the set of assumptions of the combined premise
if a premise contains discharges, the set of assumptions of the
other premise must contain the discharged resource
matched assumption and discharge pairs are removed from the
book-keeping

meaning side: compilation step amounts to functional
application with deliberate ”accidental binding” of relevant
variable
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Compilation and combination of higher-order formula

Deliberate accidental binding is a technical workaround to
introducing and replacing temporary variables.

(1) Everybody sleeps.

original premises:
g1 ( f : λy.sleep(y)
(g2 ( H) ( H : λP.∀x[person(x) ∧ P(x)]

compiled premises:
g1 ( f : λy.sleep(y)
{g2} : v
H[g2] ( H : λu.λP.∀x[person(x) ∧ P(x)](λv.u)

H[g2] ( H : λu.λP.∀x[person(x) ∧ P(x)](λv.u)

g1 ( f : λy.sleep(y) {g2} : v

f {g2} : sleep(v)
[H/f]

f : λP.∀x[person(x) ∧ P(x)](λv.sleep(v))
β-conversion

f : ∀x[person(x) ∧ sleep(x)]
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Pseudo code: higher-order prover

Stack A (agenda)
List D (database)
Solutions S (all premises with full index sets)
for A contains premises do

pop premise PA

add PA to D
for all Premises PD in D do

if PA and PD combinable and index sets disjoint then
if PA and/or PD contain assumptions then

combine sets of assumptions
add new combined premise to A

else if PA or PD contain discharges then
if discharges are a subset of assumptions then

delete ”used” discharges and assumptions
add new combined premise to A

end if
else

no assumptions or discharges; combine premises as usual
end if

end if
end for

end for
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Treating modifiers (following Gupta and Lamping, 1998)

skeleton-modifier distinction

adjuncts like adjectives, adverbs, etc. significantly increase the
complexity of a deduction

need to be treated separately to prevent explosion of partial
results

separation between two types of glue premises:

modifier: each positive (producer) occurrence of a resource
paired with negative (consumer) occurrence
(v+ ( r−)− ( (v− ( r+)+ : λP.λx .P(x) ∧ black(x)
skeleton: premise with ”unmatched” producer/consumer
resources
(v− ( r+) : λx .dog(x)

modifiers do not need to be compiled

for each new skeleton premise taken from the agenda, check
potential combination with modifiers
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Syntax/semantics correspondence: quantifiers

Determiners

the template for quantifiers is:
(x ( RESTR) ( ((SCOPE (↑) (↑).

the restrictor is always the dependency that governs the
quantifier

the scope is newly instantiated for a quantifier and later
unified with the arguments of the verb.

g: (x ( SUBJ) ( ((SCOPEA (↑) (↑)
h: (x ( OBJ) ( ((SCOPEB (↑) (↑)
g ( (h ( f ): SCOPEA ( (SCOPEB (↑)
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Deriving ambiguities with the glue prover

An example with a quantifier scope ambiguity:

(2) A dog chases every cat.

dog (g ( g) : λye .dog(y) [0]
a ((g ( g) ( ((h ( Y ) ( Y )) :

λP<e, t >.λQ<e, t >.∃x [P(x) ∧ Q(x)] [1]
cat (i ( i) : λx ′e .cat(x ′) [2]
every ((i ( i) ( ((j ( X ′) ( X ′)) :

λR<e,t>.λS<e,t>.∀z [R(z) → S(z)] [3]
chase (h ( (j ( f )) : λy ′e .λz

′
e .chases(y ′, z ′) [4]
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Deriving ambiguities with the glue prover

After compilation we have the following premises:

(3) A dog chases every cat

(g ( g) : λye .dog(y) [0]

(Y [h] ( (g [g ] ( Y )) :
λtt .λst .λQ<e,t>.λP<e,t>.∃x [P(x) ∧ Q(x)](λx ′′e .s)(λy ′′e .t) [1]

{g} : x ′′ [5]

{h} : y ′′ [6]

(i ( i) : λx ′e .cat(x ′) [2]

(X ′[j ] ( (i [i ] ( X ′)) :
λvt .λut .λS<e,t>.λR<e,t>.∀z [R(z) → S(z)](λz ′′e .u)(λx ′′′e .v) [3]

{i} : z ′′ [7]

{j} : x ′′′ [8]

(h ( (j ( f )) : λy ′e .λz
′
e .chases(y ′, z ′) [4]
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Deriving ambiguities with the glue prover

(h ( (j ( f )) : λy ′
e .λz

′
e .chases(y

′, z ′)[4] {h} : y ′′[6]

(j ( f ){h} : λz ′e .chases(y
′′, z ′)[4, 6] {j} : x ′′′[8]

f {j , h} : chases(y ′′, x ′′′)[4, 6, 8]

surface scope reading:

i{i}[2, 7]
f {j , h}[4, 6, 8] (X ′[j] ( (i [i ] ( X ′))[3]

(i [i ] ( f ){h}[3, 4, 6, 8]
f {h}[2, 3, 4, 6, 7, 8] (Y [h] ( (g [g ] ( Y ))[1]

(g [g ] ( f )[1, 2, 3, 4, 6, 7, 8] g{g}[0, 5]
f : ∃x[dog(x) ∧ ∀z[cat(z) → chases(x , z)]][0, 1, 2, 3, 4, 5, 6, 7, 8]

inverse scope reading:

g{g}[0, 5]
f {j , h}[4, 6, 8] (Y [h] ( (g [g ] ( Y ))[1]

(g [g ] ( f ){j}[1, 4, 6, 8]
f {j}[0, 1, 4, 5, 6, 8] (X ′[j] ( (i [i ] ( X ′))[3]

(i [i ] ( f )[0, 1, 3, 4, 5, 6, 8] i{i}[2, 7]
f : ∀z[cat(z) → ∃x[dog(x) ∧ chases(x , z)]][0, 1, 2, 3, 4, 5, 6, 7, 8]
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The Glue Semantics Workbench in action
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From f-structures to glue premises

c f (1 , eq ( a t t r ( var ( 0 ) , ’PRED ’ ) , semform ( ’ ea t ’ , 2 , [ var ( 10 ) , var ( 2 ) ] , [ ] ) ) ) ,
c f (1 , eq ( a t t r ( var ( 0 ) , ’SUBJ ’ ) , var ( 1 0 ) ) ) ,
c f (1 , eq ( a t t r ( var ( 0 ) , ’OBJ ’ ) , var ( 2 ) ) ) ,
. . .
c f (1 , eq ( a t t r ( var ( 10 ) , ’PRED ’ ) , var ( 1 4 ) ) ) ,
c f (1 , eq ( var ( 14 ) , semform ( ’ P lu to ’ , 0 , [ ] , [ ] ) ) ) ,
. . .
c f (1 , eq ( a t t r ( var ( 2 ) , ’PRED ’ ) , semform ( ’ bone ’ , 6 , [ ] , [ ] ) ) ) ,

pattern-based parser extracts all grammatical functions and
their PRED-values

The system first generates lexical entries for grammatical
functions and then generates the verbal spine

→ Description-by-analysis

→ May be outsourced to XLE transfer system
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From dependencies to glue premises

in LFG we make use of the flat f-structure to determine
relations between syntax and semantics

→ We can simply flatten the dependency structure into a list of
dependency facts using the underlying similarities of the two
formalisms
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Summary

We presented a semantic parser at the core of which is a chart
prover for linear logic formulas that decomposes higher order
linear logic formulas into first order formulas.

We implemented corresponding semantics that can be applied
to natural language.

We provide a small system for translating dependency parses
and Prolog f-structure files into default semantic premises
that can be proven/composed with the parser.

The program can be easily extended/modified:

lexicon: implementing a proper, potentially co-descriptive
lexicon
semantics: hook up with various semantic formalisms (e.g.
DRT)
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