
Glue semantics for Universal Dependencies
Matthew Gotham and Dag Haug, University of Oslo

Introduction In recent years, the Universal Dependencies initiative [8] has established itself as a de facto
annotation standard for cross-linguistic annotation of syntactic structure (treebank development) and subse-
quent statistical parsing with models trained on those treebanks. However, many downstream tasks require not
dependency parses but rather more elaborate semantic structures that must be derived from the parses. The
challenge, then, is to do this while relying as little as possible on language-specific, typically lexical resources
that are not available for many of the 60 languages for which there are UD treebanks.

In this paper we outline an approach to this problem that builds on techniques developed for LFG +
Glue. There are several motivations for this: First, LFG’s f-structures track the same aspect of syntactic
structure as UD dependency trees. Second, the particular version of dependency grammar that UD embodies
has inherited much from LFG via the Stanford Dependencies and the PARC dependencies. Third, unlike many
other approaches, LFG + Glue does not assume a one-to-one mapping from syntactic to semantic structures
but instead develops a syntax-semantics interface that can map a single syntactic structure to several meaning
representations, i.e. the syntax underspecifies the semantics.

The latter point becomes especially important because UD – for all its LFG inheritance – is a compromise
between theoretical concerns such as language-specific and typological adequacy on the one hand, and com-
putational concerns such as efficient annotation and reliable parsing on the other hand. A typical UD tree
therefore contains much less information than the ideal syntactic representations assumed in theoretical formal
semantics. In particular – disregarding the enhanced dependencies that are only available for a small subset
of the UD treebanks – UD structures always form a rooted tree over the tokens of the sentence. This means
that every node corresponds to an overt token of the sentence (the overt token constraint) and has exactly one
mother (the single head constraint), unless it is the root, in which case it has no mother.

Both the single-head constraint and the overt token constraint limit the expressivity of the syntactic for-
malism in a way that impairs meaning construction. Figure 1 shows the UD annotation of a typical (object)
control structure. The single head constraint makes it impossible to express that the dog is simultaneously the
object of persuaded and the subject of to bark, and the overt token constraint makes it impossible insert any
other subject for bark, say a PRO that could be coindexed with the dog. For similar reasons, the annotation of
relative structures without a relativizer (relative pronoun or completizer) shown in Figure 2 does not indicate
the position of the gap in the relative clause they thought we admired.

Approach We generate usable semantic representations in four steps.
1. non-deterministic tree rewriting in tandem with creation of meaning constructors for each generated tree
2. construction of linear logic proofs and corresponding semantic representations
3. enrichment of semantic representations using lexical resources
4. task-specific grounding of semantic representations e.g. to some knowledge base

This paper focuses on the first two steps, i.e. the language-independent, compositional semantic process which
is the foundation for steps 3 and 4, but also has considerable interest in itself as extending the glue semantics
framework to another syntactic backbone in addition to LFG [4], LTAG [5], HPSG [2] and Minimalism [6].

Linear logic fragment We use a propositional linear logic [1] with a single connective (and (undefined)
propositional functions v, t and e whose domain is the nodes of the (rewritten) UD graph. These are intended
as mnemomnic for the types on the lambda side (event, truth value, entity) and every proposition we use will
result from one of these functions. For example, dog in Figure 1 will have the type e(4) (t(4).

Generation of meaning constructors proceeds by a depth-first traversal of the UD tree. Each visited node
is matched against a file with criteria and for each fulfilled criterion a set of pairs of meaning constructors and
modified trees is created, one for each possible instantiation of the corresponding meaning constructor. Each
of these pairs are passed to the next rule and once there are no more rules, we pass to the next node in each of
the trees and repeat the process. When all nodes of all trees have been visited, we are left with a set of pairs
〈T,M〉 where T is a possibly modified tree and M is a multiset set of meaning constructors.

The rules construct meaning types in a two-step process: first we construct an ‘end type’ based on the node
itself, e.g. (v(↓) (t(↓)) (t(↓) (the Montague lift of an event type meaning) for verbs. To this type we add
implications based on the daughter nodes. For example, an nsubj daughter triggers a dependency on e(↓ nsubj).
In this way we generate e.g. the instantiated type e(2) ((v(7) (t(7)) (t(7) for barks in Figure 2.

Additional complexity arises when the paths can be instantiated in more than one way. (1) shows our rule
for the indefinite determiner (with ↑ pointing to the mother node). As in [1] we use a functional uncertainty
rather than linear logic quantification to express the possible scoping sites for the quantifier.

(1) (e(↑) (t(↑)) ((e(↑) (t(%h)) (t(%h) : %h =↑↑↑∗

Finally, when there is no way to instantiate a functional uncertainty, the rule will add the necessary nodes to
the tree (with the restriction that, as in LFG, nodes under a Kleene star are never created). (2-a) gives the

rule for the acl:relcl relation which marks the verb of a relative clause, which gets instantiated as (2-b) for the
example in Figure 2, where thought bears the acl:relcl relation and so instantiates ↓.

(2) a. (e(↓ dep∗dep{PronType = Rel}) ((v(↓) (t(↓)) (t(↓)) ((e(↑) (t(↑)) (e(↑) (t(↑)
b. (e(9) ((v(4) (t(4)) (t(4)) ((e(2) (t(2)) (e(2) (t(2)

(2-b) will show up paired with trees where the node 9 has been added at various possible extraction sites.

Meaning representation We use an updated version of PCDRT [7] as our meaning representation language,
because (i) it is defined in typed lambda calculus, and hence is straightforwardly compatible with Glue, (ii) it
has a treatment of unresolved anaphora, which is essential for an adequate meaning representation for many
naturally-occurring examples such as are collected in treebanks, and (iii) it is representationally similar to stan-
dard DRT, allowing for comparison with computational linguistic resources prepared on the basis of DRT. We
deviate from standard PCDRT in having propositional discourse referents (marked pn) for sentential embed-
ding. Presupposed discourse referents are marked with the predicate ant, and presupposed conditions with the
propositional function ∂, which maps true to true and is otherwise undefined.

Meanings for nodes and edges are constructed in parallel with the types. For example, giving a verb the
end type (v(↓) (t(↓)) (t(↓) (as described above) corresponds to constructing the meaning representation
λV.[e | head(e)];V (e) (where head is the lemma of the verb), and when a dependent d triggers a dependency on
e(↓ d), that transforms the meaning representation to λx.λV.[e | head(e), d(e, x)];V (e). For example, barks in
Figure 2 has the representation shown in (3).

(3) λx.λV.[e | bark(e),nsubj(e, x)];V (e) : e(2) ((v(7) (t(7)) (t(7).

(3) shows as much information as can be extracted from (this portion of) the UD tree alone. The thematic
relation nsubj can be understood as a very general relation, to be further specified by means of lexical knowledge,
which can be encoded in meaning postulates such as the one shown in (4).

(4) ∀e∀x((bark(e) ∧ nsubj(e, x)) → agent(e, x))

Lexical knowledge will also play a role in the specification of general thematic relations. For example, what has
happened in the composition of the meaning shown in Figure 1 is that the meaning constructor contributed by
the xcomp arc has (i) introduced an xcomp relation between the persuading event e1 and the proposition p6
that there is a barking event e4, and (ii) introduced an individual x5 as both the nsubj of e4 and the control dep
of e1. Further refinement of control dep in this case depends on lexical knowledge, namely that ‘persuade’ is an
object control verb. This can be seen as amounting to knowing the meaning postulate shown in (5).

(5) ∀e∀x((persuade(e) ∧ control dep(e, x)) → dobj(e, x))

Further refinement of dobj—presumably to theme in this case—depends on lexical knowledge about ‘persuade’.

Implementation Meaning representations are extracted from UD graphs according to the pipeline shown
in Figure 3. As described above, for any input UD tree our software outputs a set of multisets of meaning
constructors. Each of those multisets can then serve as the premises to be input into in a linear logic prover,
and depending on the premises there may be one or more proofs. The meaning term associated with each proof
is then input into a reduction engine for λ-DRT, and the result is a DRS for each proof. With lexical resources
available, these DRSs can be rejected or enriched.

Discussion Unlike other approaches (e.g. [9, Ch. 5]), we avoid the need to binarize the dependency tree for
semantic composition, but instead capitalize on the glue approach to composition and thereby derive different
scopal readings. We also make more use of the typing system, which e.g. is used to restrict unwanted scopings.
For example, lifting the end type of verbs to (v (t) (t stops arguments from scoping below the event (yielding
nonsense readings such as ‘there was an event of no-one running’). At the same time, the typing system remains
robust because it is deduced from UD tree rather than from an external lexicon. Finally, we put to use standard
techniques from LFG such as functional uncertainties to derive different readings for bare relative clauses. In
sum, we believe we have successfully constructed a theoretical framework for doing semantics off dependency
structures. Because of its theoretical focus, our work so far has only been evaluated on a small development
suite. In future work, we plan to empirically evaluate our approach on standard datasets, thereby testing not
only the UD + Glue framework, but also the adequacy of UD representations for computational semantics.

References

[1] A. D. Andrews. “Propositional glue and the projection architecture of LFG”. In: L & P 33.3 (2010). [2] A. Asudeh and
R. Crouch. “Glue Semantics for HPSG”. In: HPSG 2002 Proceedings. Ed. by F. van Eynde, L. Hellan, and D. Beermann. Stanford,
CA: CSLI Publications, 2002. [3] P. Blackburn and J. Bos. “Working with Discourse Representation Theory”. Unpublished book
draft. 2006. [4] M. Dalrymple, J. Lamping, and V. Saraswat. “LFG Semantics via Constraints”. In: EACL 6. Stroudsburg, PA,
USA: ACL, 1993. [5] A. Frank and J. van Genabith. “GlueTag: Linear Logic-based Semantics for LTAG—and what it teaches us
about LFG and LTAG”. In: LFG 2001 Proceedings. Ed. by M. Butt and T. H. King. Stanford, CA: CSLI Publications, 2001.

[6] M. Gotham. “Making Logical Form Type-Logical. Glue Semantics for Minimalist syntax”. In: L & P (2018). In press.
[7] Dag Trygve Truslew Haug. “Partial Dynamic Semantics for Anaphora. Compositionality Without Syntactic Coindexation”. In:
JoS 31 (2014), pp. 457–511. [8] M. Marneffe et al. “Universal Stanford dependencies: A cross-linguistic typology”. In: LREC.
Reykjavik, Iceland: ELRA, 2014. [9] S. Reddy. “Syntax-Mediated Semantic Parsing”. PhD thesis. University of Edinburgh, 2017.

e1 x2 x3 x5 p6

ant(x3), ∂(dog(x3))
named(x2, abrams)
persuade(e1)
control dep(e1, x5)
xcomp(e1, p6), dobj(e1, x3)
nsubj(e1, x2)

p6 :

e4

bark(e4)
nsubj(e4, x5)

Figure 1: UD control structure and (unique) system output with unmodified tree

e1 x2 e3 x4 p7

bark(e1), nsubj(e1, x2)
ant(x2), ∂(dog(x2))
ant(x4), ant(x6)
∂(think(e3)), ∂(ccomp(e3, p7))
∂(nsubj(e3, x4))

∂

p7 :

e5

admire(e5)
nsubj(e5, x6)
dep(e5, x2)

Figure 2: UD relative clause structure and (sample) system output with modified tree

Proof
3 // DRS

Multiset
of meaning
constructors

2
66

// . . .

UD tree

1 66

// . . .

1. Depth-first traversal of UD tree, described in the section ‘Linear logic fragment’.

2. Instant Glue prover, written by Miltiadis Kokkonidis with the support of SSHRC SRG #410-2006-1650
to Ash Asudeh and available at http://users.ox.ac.uk/~cpgl0036/prover/glue_prover.pl (accessed
2018-02-13).

3. Beta reduction software for λ-DRT [3].

Figure 3: The pipeline. The dotted arrows indicate that depending on the input, steps 1 and 2 may output
more than one result. Step 3, however, is functional.

